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Kumasi, a major urban center in'Ghana [3]

INTRODUCTION

e Rapid urbanization
* Causes
* Implications

 Suitability in Land use planning (LUP)
* Conflict

* Remote sensing applications

Y
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Deforestation in Ghana [2]



GOAL

The goal of this study was to understand the integration of remote sensing and
suitability analyses to inform LUP decisions.

QGIS-based Land Use Genetic Aleorithm Remote Sensing
Suitability Modeling & Time Series Data

Optimal
land use




STUDY AREA AND DATASETS

Water
Kumasi Developed
* Time period: 2000-2019 Eiim
e Population: 3.6 million [5] EZEEZCEOUS
e Resolution: 250m Agriculture
* Classes of Interest: Agriculture, Forest, Urban ] g{ﬂgiirea

Datasets

 MODIS land surface temperature (LST)
* GLanCE land cover (LC)

* Soil condition

* Conservation
* Development



INTEGRATION OF REMOTE SENSING WITH SUITABILITY

ANALYSIS
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LAND USE CONFLICT
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Suitability values
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Land use preferences: low
(1), medium (2), high (3)

Conflict =l@orm* frequency =32 + 2%+ 32 % 2=9.38



Annual LST
Environmental Land use suitability ALST in agriculture mean
. and . .models for urban, and forest
socioeconomic agriculture, forest,
variables

classes
urban

Conflict Scenario in 2050

i e e e Ordinary least squares
Population growth = 15,000

A temporal regression
. ’ slopes between agriculture,
using a genetic
- urban, and forest and
algorithm LST

Temperature change < 2 K

Optimal
land use

ALST = 0.06 AA — 0.03 AF + 0.11 AU

' >

ALST = 0.06(0) — 0.03(—1) + 0.11(1)=0.41 K
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AND LAND USE SUITABILITY

A F U
[7 4 7]
U Suitability values

sl

Suitability categories: low
(1), medium (2), high (3)

Conflict =@orm* frequency =32 + 2%+ 32 % 2=9.38

agriculture, forest,

variables urban

Conflict Scenario in 2050
Population growth = 15,000
Temperature change < 2 K

Optimize land use
within the scenario
using a genetic
algorithm

Optimal
land use

slopes

Annual LST

ALST in agriculture, mean

urban, and forest
classes

Ordinary least squares
temporal regression
between agriculture,
urban, and forest and

LST

Optimize the conflict using 5,000 iterations of a genetic algorithm

to minimize the total fitness.

4

_ _ conflict — min conflict
conflict fitness = (

max conflict — min conflict

temperature fitness = (target ALST — ALST)?

population fitness = (target # urban pixels — # urban pixels)?



OPTIMIZATION RESULTS

B Urban
B Forest
B Agriculture

initial fitness: 20170.6 optimized fitness: 7.0



SUMMARY

Remote sensing offers a novel method for optimizing land use decisions
through integration with land use suitability models.

* Land use Discontinuity
e Additional constraints
* Trial Area Size

e High Performance Computing (HPC)
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